Dataset: ESA Greenhouse Gases Climate Change Initiative (GHG_cci): Column-averaged CO2 from SCIAMACHY generated with the BESD algorithm (CO2_SCI_BESD), v02.01.02#

Dataset identifier: esacci.GHG.satellite-orbit-frequency.L2.CO2.SCIAMACHY.Envisat.BESD.v02-01-02.r1
Data store: cciodp

How to open this dataset in AVL JupyterLab  

cciodp_store = new_data_store('cciodp')
ds = cciodp_store.open_data('esacci.GHG.satellite-orbit-frequency.L2.CO2.SCIAMACHY.Envisat.BESD.v02-01-02.r1')

Bounding box map#

Bounding box map
Map tiles and data from OpenStreetMap, under the ODbL.

Basic information#

Parameter Value
Bounding box longitude (°) -180.0 to 180.0
Bounding box latitude (°) -90.0 to 90.0
Time range 2003-01-08 to 2012-03-24

Click here for full dataset metadata.

Variable list#

Click on a variable name to jump to the variable’s full metadata.

Variable Long name Units
solar_zenith_angle solar zenith angle degree
sensor_zenith_angle Sensor zenith angle degree
xco2_quality_flag quality flag [none]
xco2 column-average dry-air mole fraction of atmospheric carbon dioxide in dry air 1e-6
xco2_uncertainty 1-sigma uncertainty of the retrieved column-average dry-air mole fraction of atmospheric carbon dioxide 1e-6
co2_profile_apriori a priori dry-air mole fraction profile of atmospheric carbon dioxide 1e-6
pressure_levels pressure levels hPa
pressure_weight pressure weight 1
xco2_averaging_kernel normalized column averaging kernel 1

Full variable metadata#

solar_zenith_angle#

Field Value
standard_name solar_zenith_angle
long_name solar zenith angle
units degree
comment Solar zenith angle is the the angle between the line of sight to the sun and the local vertical.
orig_data_type float32
fill_value None
size 120
shape 120
chunk_sizes 120
file_chunk_sizes 120
data_type float32
dimensions sounding_dim
file_dimensions sounding_dim

sensor_zenith_angle#

Field Value
standard_name sensor_zenith_angle
long_name Sensor zenith angle
units degree
comment Sensor zenith angle is the angle between the line of sight to the sensor and the local vertical.
orig_data_type float32
fill_value None
size 120
shape 120
chunk_sizes 120
file_chunk_sizes 120
data_type float32
dimensions sounding_dim
file_dimensions sounding_dim

xco2_quality_flag#

Field Value
_Unsigned false
long_name quality flag
flag_values 0, 1
flag_meanings good_quality potentially_bad_quality
comment 0=good, 1=bad
orig_data_type uint8
fill_value 65535
size 120
shape 120
chunk_sizes 120
file_chunk_sizes 120
data_type uint16
dimensions sounding_dim
file_dimensions sounding_dim

xco2#

Field Value
standard_name dry_atmosphere_mole_fraction_of_carbon_dioxide
long_name column-average dry-air mole fraction of atmospheric carbon dioxide in dry air
units 1e-6
comment Retrieved column-average dry-air mole fraction of atmospheric carbon dioxide (XCO2) in ppm
orig_data_type float64
fill_value None
size 120
shape 120
chunk_sizes 120
file_chunk_sizes 120
data_type float64
dimensions sounding_dim
file_dimensions sounding_dim

xco2_uncertainty#

Field Value
long_name 1-sigma uncertainty of the retrieved column-average dry-air mole fraction of atmospheric carbon dioxide
units 1e-6
comment 1-sigma uncertainty of the retrieved XCO2 in ppm

Recommendation to compute a valid measurement error covariance matrix C in ppm^2 http://www.esa-ghg-cci.org/webfm_send/284

Diagonal elements: C(x, x) = sigma(x)^2 sigma(x) = 1-sigma uncertainty of measurement x in ppm

Off-diagonal elements: C(x, y) = sigma(x)*sigma(y)/Vmax*(k1*exp[-ds/ls-dt/lt]+k2*exp[-ds/ls]+k3*exp[-dt/lt]) Vmax = 3.81ppm^2 k1 = 1.08ppm^2 k2 = 0.38ppm^2 k3 = 0.07ppm^2 ls = 1391km lt = 14days ds = absolute spatial distance between measurements x and y in km dt = absolute time difference of measurements x and y in days | | orig_data_type | float64 | | fill_value | None | | size | 120 | | shape | 120 | | chunk_sizes | 120 | | file_chunk_sizes | 120 | | data_type | float64 | | dimensions | sounding_dim | | file_dimensions | sounding_dim |

co2_profile_apriori#

Field Value
long_name a priori dry-air mole fraction profile of atmospheric carbon dioxide
units 1e-6
comment A priori dry-air mole fraction profile of atmospheric carbon dioxide in ppm All values represent layer averages within the corresponding pressure levels. Profiles are ordered from surface to top of atmosphere. The a priori profile is needed to apply the XCO2 averaging kernel. See Product Specification Document Version 3 at www.esa-ghg-cci.org for more information.
orig_data_type float32
fill_value None
size 1200
shape 120, 10
chunk_sizes 120, 10
file_chunk_sizes 120, 10
data_type float32
dimensions sounding_dim, layer_dim
file_dimensions sounding_dim, layer_dim

pressure_levels#

Field Value
long_name pressure levels
units hPa
comment Pressure levels define the boundaries of the averaging kernel and mole fraction profile layers. Surface pressure is represented by the 1st element, i.e., profiles are ordered from surface to top of atmosphere.
orig_data_type float32
fill_value None
size 1320
shape 120, 11
chunk_sizes 120, 11
file_chunk_sizes 120, 11
data_type float32
dimensions sounding_dim, level_dim
file_dimensions sounding_dim, level_dim

pressure_weight#

Field Value
long_name pressure weight
units 1
comment Layer dependent weights needed to apply the averaging kernels (see Product Specification Document Version 3, www.esa-ghg-cci.org)
orig_data_type float32
fill_value None
size 1200
shape 120, 10
chunk_sizes 120, 10
file_chunk_sizes 120, 10
data_type float32
dimensions sounding_dim, layer_dim
file_dimensions sounding_dim, layer_dim

xco2_averaging_kernel#

Field Value
long_name normalized column averaging kernel
units 1
comment The normalized column-averaging kernel represents the sensitivity of the retrieved XCO2 to the atmospheric carbon dioxide mole fraction depending on pressure (height). All values represent layer averages within the corresponding pressure levels. Values near one are ideal and indicate that the influence of the a priori is minimal. Profiles are ordered from surface to top of atmosphere. See Product Specification Document Version 3 at www.esa-ghg-cci.org for more information.
orig_data_type float32
fill_value None
size 1200
shape 120, 10
chunk_sizes 120, 10
file_chunk_sizes 120, 10
data_type float32
dimensions sounding_dim, layer_dim
file_dimensions sounding_dim, layer_dim

Full dataset metadata#

Field Value
title ESA Greenhouse Gases Climate Change Initiative (GHG_cci): Column-averaged CO2 from SCIAMACHY generated with the BESD algorithm (CO2_SCI_BESD), v02.01.02
source
history
references [http://www.esa-ghg-cci.org/
http://www.esa-ghg-cci.org/webfm_send/273
http://onlinelibrary.wiley.com/doi/10.1029/2010JD015047/abstract
http://www.atmos-meas-tech.net/3/209/2010/amt-3-209-2010.html](http://www.esa-ghg-cci.org/
http://www.esa-ghg-cci.org/webfm_send/273
http://onlinelibrary.wiley.com/doi/10.1029/2010JD015047/abstract
http://www.atmos-meas-tech.net/3/209/2010/amt-3-209-2010.html)
product_version v02-01-02
comment These data were produced at the University of Bremen in the frame of the ESA GHG CCI project
project
ecv GHG
institute Institute of Environmental Physics
processing_level L2
product_string BESD
data_type CO2
sensor_id SCIAMACHY
platform_id Envisat
abstract The CO2_SCI_BESD dataset comprises level 2, column-averaged dry-air mole fractions (mixing ratios) of carbon dioxide (CO2) from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument on board the European Space Agency's (ESA's) environmental research satellite ENVISAT. It has been produced using the Bremen Optimal Estimation DOAS (BESD) algorithm, by the ESA Greenhouse Gases Climate Change Initiative (GHG_cci) project. The Bremen Optimal Estimation DOAS (BESD) algorithm is a full physics algorithm which uses measurements in the O2-A absorption band to retrieve scattering information about clouds and aerosols. This is the Greenhouse Gases CCI baseline algorithm for deriving SCIAMACHY XCO2 data. A product has also been generated from the SCIAMACHY data using an alternative algorithm: the WFMD algorithm. It is advised that users who aren't sure whether to use the baseline or alternative product use this BESD product. For more information regarding the differences between baseline and alternative algorithms please see the Greenhouse Gases CCI data products webpage. For further information on the product, including details of the BESD algorithm and the SCIAMACHY instrument, please see the associated product user guide (PUG) or the Algorithm Theoretical Basis Documents.
publication_date 2018-03-19T20:58:16
uuid 294b4075ddbc4464bb06742816813bdc
catalog_url https://catalogue.ceda.ac.uk/uuid/294b4075ddbc4464bb06742816813bdc
cci_project GHG