Dataset: c3s_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D#

Dataset identifier: c3s_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D
Data store: cmems

How to open this dataset in AVL JupyterLab  

cmems_store = new_data_store('cmems')
ds = cmems_store.open_data('c3s_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D')

Bounding box map#

Bounding box map
Map tiles and data from OpenStreetMap, under the ODbL.

Basic information#

Parameter Value
Bounding box longitude (°) -180 to 180
Bounding box latitude (°) -90 to 90
Time range 1997-09-04 to 2023-03-06

Click here for full dataset metadata.

Variable list#

Click on a variable name to jump to the variable’s full metadata.

Variable Long name Units
CHL Chlorophyll-a concentration in seawater (not log-transformed), generated by as a blended combination of OCI, OCI2, OC2 and OCx algorithms, depending on water class memberships milligram m-3
MICRO Multi-sensor Micro Phytoplankton Chlorophyll a concentration milligram m-3
MICRO_BIAS Multi-sensor Micro Phytoplankton Chlorophyll a - bias milligram m-3
MICRO_RMSE Multi-sensor Micro Phytoplankton Chlorophyll a - root mean square error milligram m-3
NANO Multi-sensor Nano Phytoplankton Chlorophyll a - root mean square error milligram m-3
NANO_BIAS Multi-sensor Nano Phytoplankton Chlorophyll a - bias milligram m-3
NANO_RMSE Multi-sensor Nano Phytoplankton Chlorophyll a - root mean square error milligram m-3
PICO Multi-sensor Pico Phytoplankton Chlorophyll a concentration milligram m-3
PICO_BIAS Multi-sensor Pico Phytoplankton Chlorophyll a - bias milligram m-3
PICO_RMSE Multi-sensor Pico Phytoplankton Chlorophyll a - root mean square error milligram m-3

Full variable metadata#

CHL#

Field Value
long_name Chlorophyll-a concentration in seawater (not log-transformed), generated by as a blended combination of OCI, OCI2, OC2 and OCx algorithms, depending on water class memberships
units milligram m-3
standard_name mass_concentration_of_chlorophyll_a_in_sea_water
units_nonstandard mg m^-3
type surface
valid_min 0.01
source Sentinel-3a,Sentinel-3b-OLCIa,OLCIb-L3
valid_max 66.83439

MICRO#

Field Value
long_name Multi-sensor Micro Phytoplankton Chlorophyll a concentration
units milligram m-3
standard_name mass_concentration_of_microphytoplankton_expressed_as_chlorophyll_in_sea_water
type surface
source Sentinel-3a,Sentinel-3b-OLCIa,OLCIb-L3
valid_max 3.33
valid_min 0.0

MICRO_BIAS#

Field Value
long_name Multi-sensor Micro Phytoplankton Chlorophyll a - bias
units milligram m-3
type surface
valid_max 3.33
valid_min 0.0

MICRO_RMSE#

Field Value
long_name Multi-sensor Micro Phytoplankton Chlorophyll a - root mean square error
units milligram m-3
type surface
valid_max 3.33
valid_min 0.0

NANO#

Field Value
long_name Multi-sensor Nano Phytoplankton Chlorophyll a - root mean square error
units milligram m-3
standard_name mass_concentration_of_nanophytoplankton_expressed_as_chlorophyll_in_sea_water
type surface
source Sentinel-3a,Sentinel-3b-OLCIa,OLCIb-L3
valid_max 0.64
valid_min 0.0

NANO_BIAS#

Field Value
long_name Multi-sensor Nano Phytoplankton Chlorophyll a - bias
units milligram m-3
type surface
valid_max 0.64
valid_min 0.0

NANO_RMSE#

Field Value
long_name Multi-sensor Nano Phytoplankton Chlorophyll a - root mean square error
units milligram m-3
type surface
valid_max 0.64
valid_min 0.0

PICO#

Field Value
long_name Multi-sensor Pico Phytoplankton Chlorophyll a concentration
units milligram m-3
standard_name mass_concentration_of_picophytoplankton_expressed_as_chlorophyll_in_sea_water
type surface
source Sentinel-3a,Sentinel-3b-OLCIa,OLCIb-L3
valid_max 0.13
valid_min 0.0

PICO_BIAS#

Field Value
long_name Multi-sensor Pico Phytoplankton Chlorophyll a - bias
units milligram m-3
type surface
valid_max 0.13
valid_min 0.0

PICO_RMSE#

Field Value
long_name Multi-sensor Pico Phytoplankton Chlorophyll a - root mean square error
units milligram m-3
type surface
valid_max 0.13
valid_min 0.0

Full dataset metadata#

Field Value
contact email: cmems@pml.ac.uk
Naming_authority CMEMS
start_time 00:00:00 UTC
stop_time 23:59:00 UTC
Conventions CF-1.7
Metadata_Conventions Unidata Dataset Discovery v1.0
netcdf_file_type NETCDF4_CLASSIC
Netcdf_version_id V4
project Copernicus Marine (CMEMS)
references http://marine.copernicus.eu
institution Plymouth Marine Laboratory, operating as a production unit within the CMEMS OCTAC
distribution_statement Copernicus Marine data license (see website)
cmems_production_unit OC-PML-PLYMOUTH-UK
citation The licensees should respect the Copernicus Marine usage agreement (http://marine.copernicus.eu/services-portfolio/service-commitments-and-licence/) by crediting Copernicus in a manner similar to: <Generated using E.U. Copernicus Marine Service Information, provided by OCTAC/PML production centre>
file_quality_index 0s
product_version v5
grid_mapping Equirectangular
software_version 7.5
summary Data products generated by the Ocean Colour component of the European Space Agency Climate Change Initiative project. These files are daily composites of merged sensor (MERIS, MODIS Aqua, SeaWiFS LAC & GAC, VIIRS, OLCI) products. MODIS Aqua and SeaWiFS were band-shifted and bias-corrected to MERIS bands and values using a temporally and spatially varying scheme based on the overlap years of 2003-2007. VIIRS was band-shifted and bias-corrected in a second stage against the MODIS Rrs that had already been corrected to MERIS levels, for the overlap period 2012-2013; and at the third stage OLCI was bias corrected against already corrected MODIS, for overlap period 2016-07-01 to 2019-06-30. VIIRS, MODIS, SeaWiFS and MERIS Rrs were derived from a combination of NASA's l2gen (for basic sensor geometry corrections, etc) and HYGEOS Polymer v4.12 (for atmospheric correction). OLCI Rrs were sourced at L1b (already geometrically corrected) and processed with polymer. The Rrs were binned to a sinusoidal 4km level-3 grid, and later to 4km geographic projection, by Brockmann Consult's SNAP. Derived products were generally computed with the standard algorithmsthrough SeaDAS. QAA IOPs were derived using the standard SeaDAS algorithm but with a modified backscattering table to match that used in the bandshifting. The final chlorophyll is a combination of OCI, OCI2, OC2 and OCx, depending on the water class memberships. Uncertainty estimates were added using the fuzzy water classifier and uncertainty estimation algorithm of Tim Moore as documented in Jackson et al (2017). and updated accorsing to Jackson et al. (in prep).
keywords satellite,observation,ocean,ocean colour
platform Sentinel-3a,Sentinel-3b
start_date 2023-03-06
stop_date 2023-03-06
northernmost_latitude 90
southernmost_latitude -90
easternmost_longitude 180
westernmost_longitude -180
grid_resolution 4KM
software_name MERIS SeaDAS processor
product_level l3
sensor ESA Ocean Colour Climate Initiative v6
cmems_product_id OCEANCOLOUR_GLO_BGC_L3_MY_009_107
title c3s_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D
parameter_code CHL MICRO MICRO_BIAS MICRO_RMSE NANO NANO_BIAS NANO_RMSE PICO PICO_BIAS PICO_RMSE
parameter Chlorophyll-a concentration in seawater (not log-transformed), generated by as a blended combination of OCI, OCI2, OC2 and OCx algorithms, depending on water class memberships and Phytoplankton Functional Types
site_name GLO
creation_date 2023-03-23
Creation_time 13:46:50 UTC