Dataset: cmems_obs-oc_blk_bgc-plankton_nrt_l3-olci-300m_P1D#

Dataset identifier: cmems_obs-oc_blk_bgc-plankton_nrt_l3-olci-300m_P1D
Data store: cmems

How to open this dataset in AVL JupyterLab  

cmems_store = new_data_store('cmems')
ds = cmems_store.open_data('cmems_obs-oc_blk_bgc-plankton_nrt_l3-olci-300m_P1D')

Bounding box map#

Bounding box map
Map tiles and data from OpenStreetMap, under the ODbL.

Basic information#

Parameter Value
Bounding box longitude (°) 26.500000006054687 to 42
Bounding box latitude (°) 40 to 48
Time range 2023-04-08 to 2023-04-14
Time period 1D

Click here for full dataset metadata.

Variable list#

Click on a variable name to jump to the variable’s full metadata.

Variable Long name Units
CHL Chlorophyll a concentration milligram m^-3
QI_CHL Quality Index for OLCI Chlorophyll a concentration 1
SENSORMASK Sensor Mask 1

Full variable metadata#

CHL#

Field Value
band_name OLCI band name CHL
long_name Chlorophyll a concentration
standard_name mass_concentration_of_chlorophyll_a_in_sea_water
type surface
units milligram m^-3
valid_min 0.01
valid_max 100.0
comment DAlimonte Kajiyama

QI_CHL#

Field Value
long_name Quality Index for OLCI Chlorophyll a concentration
comment QI=(log(DailyData)-ClimatologyMedianData))/ClimatologyStandardDeviation
type surface
units 1
valid_min -5.0
valid_max 5.0
climatology_file /store2/data/s_climatology/hr_new/104/S104-chl-bs-hr-clima.nc

SENSORMASK#

Field Value
comment OLCI Sentinel-3A=1; OLCI Sentinel-3B=2. Each SENSORMASK pixel is the sum of all available sensor values. For example, if a pixel is observed by OLCI Sentinel-3A and OLCI Sentinel-3B then SENSORMASK = 3
valid_min 1
valid_max 31
long_name Sensor Mask
type surface
units 1

Full dataset metadata#

Field Value
netcdf_version v4
Conventions CF-1.4
platform Sentinel3A+B
product_level L3
contact technical@gos.artov.isac.cnr.it
institution CNR-GOS
references 1) Zibordi, G., F. Melin, J.-F. Berthon, and M. Talone (2015). In situ autonomous optical radiometry measurements for satellite ocean color validation in the Western Black Sea. Ocean Sci., 11, 275-286. - 2) Kajiyama T., D. DAlimonte, and G. Zibordi, Algorithms merging for the determination of Chlorophyll-a concentration in the Black Sea, IEEE Geoscience and Remote Sensing Letters, 2018. https://www.doi.org/10.1109/LGRS.2018.2883539
sensor Ocean and Land Colour Instrument
sensor_name OLCIA+B
reproject /home/gosuser/Processing/OC_PROC_EIS202211/s3olciProcessing/s3olciL2proc.py
easternmost_longitude 42.0
westernmost_longitude 26.5
northernmost_latitude 48.0
southernmost_latitude 40.0
start_date 2023-04-14
stop_date 2023-04-14
grid_resolution 0.3 km
grid_mapping Equirectangular
software_name GOS Processing chain
creation_date 2023-04-15
creation_time 02:50:13 UTC
distribution_statement See CMEMS Data License
naming_authority CMEMS
cmems_production_unit OC-CNR-ROMA-IT
source surface observation
timeliness NR
product_version v02QL
area bs
mosaic /home/gosuser/Processing/OC_PROC_EIS202211/s3olciProcessing/s3olcimosaic.py
source_files Oa2023104-chl-bs-fr.nc, Ob2023104-chl-bs-fr.nc
site_name BS
parameter_code PLANKTON
parameter Chlorophyll-a concentration and Phytoplankton Functional Types
title cmems_obs-oc_blk_bgc-plankton_nrt_l3-olci-300m_P1D
cmems_product_id OCEANCOLOUR_BLK_BGC_L3_NRT_009_151